
used effectively in the mode of the method of t r ia ls  when the electronic computer has a display. A new kind 
of " r e s o l v e r , "  whose main elements are  an electronic computer performing the most routine part of the work, 
a display which permits operational analysis and decision making, and an operator-calculator  which forms a 
new model for  approbation on the basis of the data obtained, hence originates. 
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S O L U T I O N  OF t N V E R S E  H E A T - C O N D U C T I O N  

P R O B L E M S  ON S P E C I A L I Z E D  A N A L O G  C O M P U T E R S  

M. P .  K u z ' m i n ,  I .  M. L a g u n ,  
a n d  S.  V.  L a g u n  

UDC 536.24 

Recommendations on the application of specialized analog computers for the solution of inverse 
problems of heat conduction are  given. The presence of a zone of sensitivity delimiting the pos- 
sible location of a pr imary  information source is established. 

Inverse problems are  quite extensive in heat-  and mass - t rans fe r  processes .  This is explained pr imar-  
ily by the fact that measurement  of the parameters  of these processes  (temperature, heat-flux density, e tc . ,  
for  instance) in the range of high values under non-steady-state conditions is difficult, and a completely in- 
surmountable problem in a number of cases .  In such situations inverse problems are  the most acceptable 
method of solving these problems.  

Inverse problems of heat conduction are  used in thermal  power plants to establish the thermal  gasdynam- 
ic circumstances according to the results  of tempera ture  measurements ,  to determine uniqueness conditions, 
and for  machine design. In connection with the growing heat loads, the determination of the thermal  environ- 
ment in the high-temperature range, i . e . ,  the heat-flux density qs and the surface temperature  Ts ,  the tem- 
perature  of the gas s t ream Tg flowing around a solid, the coefficient of heat t ransfer  between the hot gas 
s t ream and the solid ~g, etc., according to the results  of temperature  measurements in the low-temperature �9 
range, is  a problem which must be solved in engineering. Inverse problems of heat conduction are  important 
in the design and construction of heat shields, in the prediction of the thermophysical propert ies of materials  
with a given operating range, etc.  

If the process of heat t ransfe r  between a mediumand a solid is considered, then depending on the loca- 
tion of the quantity to be determined inverse problems of heat conduction can be separated into three classes: 
internal,  external ,  and combined. We shall re fe r  such problems for which the parameters  (characterist ics)  
within the body or  on its surfaces are  determined as a resul t  of the solution to internal,  problems when the 
charac ter i s t ics  of the environment are  found to external,  and problems for which combinations of parameters  
of the f i rs t  two classes will be the subject of solution to the combined classes.  A diagram of the classifica- 
tion of inverse problems of heat conduction is shown in Fig. 1. 

Tul 'skii  Polytechnic Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 33, No. 6, pp. 
1123-1130, December,  1977. Original ar t icle  submitted April 5, 1977. 

1508 0022-0841/77/3306-1508507.50 �9 1978 Plenum Publishing Corporation 



! r  

iE 

i t u  
i i.-q 

Fig. 

External ] Internal 

: l  

" i 

~ 

.,..i 

f 

, , .4 

X ~ 

~ 0 ~  

u 
, 2  

0 

C9 ~  

CA 

Combined 

iti 
1. Class i f ica t ion of i nve r se  p rob l ems  of heat conduction 

. 

E 

FPHC), 

Let us examine  the n o n - s t e a d y - s t a t e  heat mode in a f lat  wall under  n o n s y m m e t r i e  h e a t - t r a n s f e r  condi-  
t ions .  Let  a f iat  wall of th ickness  5 be given.  The t he rmophys i ca l  p r o p e r t i e s  of the wall  m a t e r i a l  a r e  c h a r a c -  
t e r i z ed  by the quanti t ies  ~, c, p,  and a .  The t e m p e r a t u r e  at a l l p o i n t s  of the wall  is constant  and equal to T i 
at the ini t ial  instant .  On one side a hot medium with t e m p e r a t u r e  Tg flows over  the wall ,  and a cold medium 
with a t e m p e r a t u r e  Tc on the other .  The heat t r a n s f e r  between the wall  and the hot medium is  cha r ac t e r i z ed  
by the coeff icient  of heat t r a n s f e r  ~g and i between the wall  and the cold med ium by a c -  In the gene ra l  ca se ,  
the h e a t - t r a n s f e r  coeff icients  a g  and a c a r e  not equivalent .  The p rob l em is fo rmula ted  ma thema t i ca l ly  
as  follows fo r  a one-d imens iona l  field: 

aT O (LOT I; 
cp o.r -- Ox \ Ox ] 

T =  Ti; 

L 0 r  + ~ ( r g  - r)  = o or 
Ox 

LOT T 
o-; + + [( 4] 

Z O-r - - a c ( T  c -  T) = 0. 
Ox 

(1) 

In this formula t ion  the solution of the i nve r se  p rob l ems  of heat conduction reduces  to the de te rmina t ion  o f T s ,  
c ,  p,  X, qs = - - M ~ T / a x ) s ,  Br ,  e,  and 6 for  the in te rna l ,  and Tg,  ~g, A t ,  and eg fo r  the ex te rna l  p r o b l e m s .  

Bes ides  the analy t ica l  and numer i ca l  methods using a r egu la r i z ing  a lgor i thm and an e lec t ron ic  digital  
compute r ,  the method of analog e l ec t r i ca l  s imulat ion on spec ia l i zed  analog compu te r s  is  well reco~nnended  
fo r  the solution of i nve r s e  p rob lems  of heat conduction. Charac te r i s t i c  of it  a r e  the quite fas t  r e s p o n s e ,  the 
phys ica l  g raphic  solut ion,  the poss ib i l i ty  of in tervent ion during the solution and the rapid ver i f ica t ion  of the 
r e su l t s  obtained by solving the d i rec t  p rob lem on the s a m e  model ,  and the g r e a t  s impl ic i ty  and high accu racy .  
Underlying the method of e l ec t r i ca l  s imula t ion  is  the s t r i c t  ma thema t i ca l  analogy between the p r o c e s s e s  in the 
or ig inal  and in the model .  By using the s cheme  of rep lac ing  the heat-conduct ing medium succes s ive ly  by con-  
nected e l ec t r i c a l  cel ls  of r e s i s t o r s  and capac i t ances ,  we obtain a model  in which the t r a n s f e r  e l ec t r i ca l  p r o -  
ce s s  i s  r e p r e s e n t e d  by the s y s t e m  of equations 

Ou 0 ( 1  Ou ) 
C e . ~ - -  . 

Or e Ox e r Ox~ ; u = ui; (2) 
Ou .~ r 
axe ~ ( U g - - U ) =  O; 

g 
Ou r (% - -  u) = O .  

axe R c 
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F i g .  2. Schemat ic  d i a g r a m  of the e l ec t r i c a l  model  (a) and block d i -  
a g r a m  of the s imula t ing  unit (b) (EMSM, e l ec t r i ca i  model  supply mod-  
ule;  VBCM, v a r i a b l e  boundary-condi t ion  module;  EM, f ield of the 
e l e c t r i c a l  model ;  1-10, display) .  

The d i a g r a m  Of the e l ec t r i c a l  mode l ,  in p r inc ip le ,  as well  as  the block d i a g r a m  of the modeling appa -  
r a t u s ,  a r e  shown in Fig.  2. It  should be noted that  i t  is expedient  to use  cathode displays  of the I -6  or  1-10 
type o r  c a thode - r ay  osc i l loscopes  of the C 1-4 ,  C 1-49,  C 1-68 types  as  being m o r e  graphic  r e c o r d e r s  in so lv -  
i n g i n v e r s e  p r o b l e m s .  Following [1], we have 

k 2 8 ce-- l ; ks = _ _ ;  

R g =  ~ 6  rn; k~=--;Xe 

T 
ogRg = %Rc ;  k ,  = - -  

U 

(3) 

to  d e t e r m i n e  the regu la tab le  p a r a m e t e r s  of the e l ec t r i c a l  model  during s imulat ion.  

The solut ion of d i r ec t  and i n v e r s e  p r o b l e m s  of heat  conduction on spec ia l ized  e l ec t r i ca l  models  cons is t s  
: in the  following. The s y s t e m  of equations with the uniqueness  conditions (1), which d e s c r i b e s  heat  t r a n s f e r  to 
the solid, is known in the solut ion of d i r ec t  p r o b l e m s  of heat conduction. This  s y s t e m  of equations p e r m i t s  de -  
t e rmina t ion  of al l  the p a r a m e t e r s  of the e l e c t r i c  model  (3) such as  the r e s i s t a n c e ,  capac i tance ,  and quantity 
of cel ls  r ,  c e ,  and n; the boundary  r e s i s t o r s  Rg and Rc the coordinate  k / ,  t ime  kT,  and t e m p e r a t u r e  k T s c a l e s ,  
and the in i t ia l  vol tage d is t r ibut ion  by means  of known re la t ionsh ips .  In other  w o r d s ,  knowledge of the boundary 
conditions and the rmophys i ca l  p a r a m e t e r s  (coefficients) of the energy  equation p e r m i t s  comple te  computat ion 
of the regula tab le  p a r a m e t e r s  of t he  model .  The p r o c e s s  of solving the p rob lem cons is t s  in record ing  the 
vol tage change at a des i r ed  point in t i m e .  As a ru le ,  the a im  in solving the i nve r se  p rob lem of heat conduction 
is  to  de t e rmine  the boundary conditions (Tg, ~ g ,  Tc ,  ~ c ,  e tc .  ) o r  the t he rm0phys i ca l  p a r a m e t e r s  (X, c,  p ,  
e t c . ) .  This  means  that  one or  m o r e  of the e l ec t r i ca l  model  p a r a m e t e r s  (Ug, Rg, u c,  R c, r ,  c e ,  e tc .  ) a r e  un- 
known and to  be de te rmined .  The solution is  c a r r i e d  out on the e l ec t r i c a l  model  by se lec t ing  the des i r ed  quan-  
t i ty .  A g r e e m e n t  between the given and m e a s u r e d  t e m p e r a t u r e  curve  at a fixed point of the sol id  is  a c r i t e r ion  
of the e s t i m a t e .  D i a g r a m s  fo r  the solution of the d i rec t  and i nve r se  p r o b l e m s  of heat conduction and i ts  s i m u -  
lat ion a r e  r e p r e s e n t e d  in Fig.  3, where  the d i rec t ion  of inse r t ing  the  data  and the path of the solution is shown 
by a r r o w s .  

To i l lus t ra te  the method,  le t  us p r e s en t  an example  of solving the i n v e r s e  p rob l em of heat conduction. 
Let  a f iat  wall  be given at  some  point of which the t e m p e r a t u r e  is m e a s u r e d .  The t e m p e r a t u r e  of the hot m e -  
d ium flowing ove r  the left  su r f ace  of the wall  and the nature  of i ts  va r ia t ion  mus t  be found accord ing  to the data 
of t e m p e r a t u r e  m e a s u r e m e n t s  in the wall .  

The solution of this  p rob l em  for  a s t ee l  wall  was c a r r i e d  out on an e l ec t r i ca l  model  of 20 cel ls  r ce  (r = 

0-3.2 1~/~, c e = 100 ~ F . '  

A number  of p rob l em s  was solved (Fig. 4) t o  c la r i fy  the influence of a b r i e f  change in t e m p e r a t u r e  of the 
med ium Tg on the nature  of the behav io r  of the t e m p e r a t u r e  field in the wall.  The t e m p e r a t u r e  of the medium 
in the f i r s t  20% of the t i m e  of the t h e r m a l  effect  hence va r i ed  accord ing  to di f ferent  laws (Fig. 4a),  then r e -  
m a i n e d  constant  to  the end of the t h e r m a l  effect .  

I t  follows f r o m  Fig.  4b that  b r i e f  changes in the t e m p e r a t u r e  of the med ium Tg damp out rapidly  with 
r e m o v a l  f r o m  the s u r f a c e ,  e spec ia l ly  in the case  of boundary conditions of the th i rd  kind. This  is  explained 
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Fig. 3. Diagram for  the solution of direct  (a) and inve r se  (b) problems 
of heat conduction and the e lec t r ica l  simulation (c) of these problems 
(1) input data; 2) des i red  quantity; VBCM, variable boundary-condit ion 
module; EM, field of the e lec t r ica l  model; 1-10, display). 
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V + 
Fig. 4. Nature of the change in tempera ture  of the medium (a) and 
change in the wail t empera tu re  (b) at different distances f rom the heated 
(left) surface  (1) x/5 = 0.25; 2) 0.5; 3) 1.0 for boundary conditions of the 
f i rs t  (dashed line) and third (solid line) kinds. 

by the presence  of the rmal  res i s tances  on both the boundary and within the solid. The des i red  changes in the 
t empera tu re  of the medium not only diminish in amplitude but are  also deformed with t ime.  Hence, the nature 
of the change in the des i red  quantity should be established p r imar i ly  in solving inverse  problems.  This can 
evidently be done if the source  of the initial information were located in the zone of sensi t ivi ty of the noted os-  
cil lations.  

We understand the zone of sensitivity to be the space in which the p r imary  information source  direct ly  
or  indirect ly reac ts  on the fundamental changes of the des i red  quantity. 

The investigations executed show that the zone of sensit ivity diminishes with the inc rease  in the e r r o r  
of the p r ima r y  information source ,  with the increase  in the f requency,  and with the diminution in the amplitude 
of the oscillations in the desired quantity. The choice of the location of the information source  influences the 
nature and accuracy  of the resu l t s .  I towever,  it should be noted that if a sea rch  of the mean values is made,  
then the zone of sensi t ivi ty is substantially expanded. 

There fore ,  it should be seen in solving inverse  problems that the information source  is in the zone of 
sensit ivity and only then should one proceed to the solution. 

In the example considered,  the reproduced t empera tu re  of the medium differs f rom the t rue value by not 
more  than 5% when the information source  is located in the zone of sensi t ivi ty.  

NOTATION 

Thermal  p rocess :  T, Ts,  T i, Tg,  To, wall, surface,  initial, gas s t r eam and environmental  t em-  
pe ra tu re s ,  respect ively;  q s '  heat-flux density on the surface;  ~ ; c , a ,  thermal-conduct iv i ty ,  speci f ic-heat ,  and 
thermal-diffusix~ity coefficients;  p, density; C~k, convective hea t - t r ans fe r  coefficient; ~g, ~c, total  hea t - t r ans -  
fer  coefficient of the wall f rom the hot and cold medium; At ,  Br ,  radiation coefficients;  e, eg, emiss iv i ty  of 
the ~11  and the gas flow; 6, wall thickness;  x, coordinate;  T, t ime.  Elec t r ica l  p rocess :  u, u i ,  Ug u b, ceil,  
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in i t ia l ,  left- and r igh t - s ide  model  boundary vo l t ages ,  r e spec t ive ly ;  r ,  Ce, ohmic r e s i s t a n c e  and capaci tance  
of the mode l  cel l ;  Rg, Rc,, l e f t -  and r igh t - s ide  model  boundary r e s i s t a n c e s ;  n, number  of model  cel ls ;  k l , k r ,  
kT ,  coord ina te ,  t ime,  and t e m p e r a t u r e  s ca l e s ;  x e ,  cel l  coordinate ;  r e ,  t ime .  
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U S E  O F  A H Y P E R B O L I C  E Q U A T I O N  I N  

T H E R M A L - C O N D U C T I V I T Y  T H E O R Y  

V .  A .  B u b n o v  a n d  I .  A .  S o l o v ' e v  UDC 536.33 

A solution of the t e l eg raph  equation is  g iven which is  c lose  to a s e l f - s i m i l a r  solut ion.  

1. Singular i t ies  in Solutions of the Class ica l  Equation of T h e r m a l  Conductivity. In the s imula t ion  of 
t h e r m a l  p r o c e s s e s  by the equation of t h e r m a l  conductivi ty,  

or  o~r (1) 
- - = a  , 

Ot Ox z 

ce r t a in  s ingula r i t i es  occur .  Actual ly ,  we cons ider  the fundamental  solution of Eq.  (1) 

T o (x, t) = I/V'4aat exp [ - -  xZ/(4at)] (2) 

and find the mean  value of the squa re  of the t e m p e r a t u r e  d i sp lacement  f r o m  i ts  ini t ial  posi t ion during the t ime  

t: 

Ax--'z = S (x - -xo)  z T o (x, t) dx/~ T o (x, t) dx = 2at. (3) 

We define the r a t e  of t e m p e r a t u r e  d i sp l acemen t  in the following manner :  

v=- d ( y S )  = r (4) 

I t  then follows that  the t e m p e r a t u r e  nommfformi ty  is p ropagated  ins tantaneously  at the ini t ia l  t ime .  A s i m i l a r  
pa radox  occurs  in the theo ry  of Brownian motion [1]. 

Using the fundamenta l  solut ion,  we find an equation for  the su r face  of m a x i m u m  t e m p e r a t u r e .  To do th i s ,  
we d i f fe ren t ia te  Eq.  (2) with r e s p e c t  to t i m e  and equate the r e su l t  to zero .  Then x2--2at = 0, hence x = 

and 

dx I / a / ( 2 0  (5) 
V ~  dt 

i .  e . ,  the expres s ion  for  the r a t e  of d i sp l acemen t  of the su r f ace  of m a x i m u m  t e m p e r a t u r e  ag r ee s  with Eq.  (4) 

and V m a  x has a m a r k e d  s ingular i ty .  

The use  of the c l a s s i ca l  equation of t h e r m a l  conductivity in phase - t r ans i t i on  p rob l ems  a lso  leads to a 
s i m i l a r  pa radox .  Actual ly ,  in the well-known Stefan solution [2], the law of motion fo r  the f reez ing  line has 

the f o r m  z = pv~- so  that  

V, = _d.z = p/(2]/-F).  
dt 

T r a n s l a t e d  f r o m  Inzhene rno-F iz i chesk t i  Zhurnal ,  Vol. 33, No. 6, pp. 1131-1135, D e c e m b e r ,  1977. 
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