used effectively in the mode of the method of trials when the electronic computer has a display. A new kind
of "resolver, " whose main elements are an electronic computer performing the most routine part of the work,
a display which permits operational analysis and decision making, and an operator~calculator which forms a
new model for approbation on the basis of the data obtained, hence originates.
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SOLUTION OF INVERSE HEAT-CONDUCTION
PROBLEMS ON SPECIALIZED ANALOG COMPUTERS

M. P. Kuz'min, I, M. Lagun, UDC 536.24
and S. V., Lagun

Recommendations on the application of specialized analog computers for the solution of inverse
problems of heat conduction are given. The presence of a zone of sensitivity delimiting the pos-
sible location of a primary information source is established.

Inverse problems are quite extensive in heat- and mass-transfer processes. This is explained primar-
ily by the fact that measurement of the parameters of these processes (temperature, heat-flux density, etc.,
for instance) in the range of high values under non-steady-state conditions is difficult, and a completely in-
surmountable problem in a number of cases. In such situations inverse problems are the most acceptable
method of solving these problems. v ‘

Inverse problems of heat conduction are used in thermal power plants to establish the thermal gasdynam-
ic circumstances according to the results of temperature measurements, to determine uniqueness conditions,
and for machine design. In connection with the growing heat loads, the determination of the thermal environ-
ment in the high-temperature range, i.e., the heat-flux density g5 and the surface temperature Tg, the tem-
perature of the gas stream Tg flowing around a solid, the coefficient of heat transfer between the hot gas
stream and the solid ¢, etc., according to the results of temperature measurements in the low-temperature
range, is a problem which must be solved in engineering. Inverse problems of heat conduction are important
in the design and construction of heat shields, in the prediction of the thermophysical properties of materials
with a given operating range, etc. '

If the process of heat transfer between a medium and a solid is considered, then depending on the loca-
tion of the quantity to be determined inverse problems of heat conduction can be separated into three classes:
internal, external, and combined. We shall refer such problems for which the parameters .(characteristics)
within the body or on its surfaces are determined as a result of the solution to internal, problems when the
characteristics of the environment are found to external, and problems for which combinations of parameters
- of the first two classes will be the subject of solution to the combined classes. A diagram of the classifica~
tion of inverse problems of heat conduction is shown in Fig. 1. '

Tul'skii Polytechnic Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol, 33, No. 6, pp.
1123-1130, December, 1977. Original article submitted April 5, 1977.
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Fig. 1. Classification of inverse problems of heat conduction (IPHC).

Let us examine the non-steady~state heat mode in a flat wall under nonsymmetric heat-transfer condi~
tions. Let a flat wall of thickness 6 be given. The thermophysical properties of the wall material are charac-
terized by the guantities A, ¢, p, and @. The temperature at all points of the wall is constant and equal to Ty
at the initial instant. On one side a hot medium with temperature T, flows over the wall, and a cold medium
with a temperature T, on the other. The heat transfer between the wall and the hot medium is characterized
by the coefficient of heat transfer o, and. between the wall and the cold medium by a@e. In the general case,
the heat-transfer coefficients %g and o are not equivalent. The problem is formulated mathematically
as follows for a one-dimensional field:

T @ aT)

o = — [ A— |;

ot ox \ Ox

T=T1,
x‘g— Fagly —T)=0 or @

aT T\ T\
A— T, —T)+A {2} —B,{—1] |=0;
o Teallg =D+ ‘[(100) ‘(100)]

aT

1S =T~ T) =0,

In this formulation the solution of the inverse problems of heat conduction reduces to the determination of Tg,
Cy Py As Qg = —A(®T/8x)g, Br, &, and 6 for the internal, and Tg, Qg, A, and Eg for the external problems.

Besides the analytical and numerical methods using a regularizing algorithm and an electronic digital
computer, the method of analog electrical simulation on specialized analog computers is well recommended -
for the solution of inverse problems of heat conduction. Characteristic of it are the quite fast response, the
physical graphic solution, the possibility of intervention during the solution and the rapid verification of the
results obtained by solving the direct problem on the same model, and the great simplicity and high accuracy.
Underlying the method of electrical simulation is the strict mathematical analogy between the processes in the
original and in the model. By using the scheme of replacing the heat-conducting medium successively by con~
nected electrical cells of resistors and capacitances, we obtain a model in which the transfer electrical pro-~
cess is represented by the system of equations

ou d (1 au)
(g~ == —— | —— + — 1} u=ui;

a-re Ox, \ r Ox, @)
ou r
o (g —u) = 0;
o, + Rg( g— )
O —wy=0
Oxe R,
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Fig. 2. Schematic diagram of the electrical model (a) and block di-
agram of the simulating unit (b) EMSM, electrical model supply mod-
ule; VBCM, variable boundary-condition module; EM, field of the
electrical model; I-10, display).

The diagram of the electrical model, in principle, as well as the block diagram of the modeling appa-
ratus, are shown in Fig. 2. It should be noted that it is expedient to use cathode displays of the I-6 or I-10
type or cathode-ray oscilloscopes of the C 1-4, C 1-49, C 1-68 types asbeing more graphic recorders in solv-
ing inverse problems. Following [1], we have

2
Ce=_Fi k= —;
ark, n
@)
L
g 0%6 Te

T
agRg= o R ky= P

to determine the regulatable parameters of the electrical model during simulation.

The solution of direct and inverse problems of heat conduction on specialized electrical models consists
-inthe following. The system of equations with the uniqueness conditions (1), which describes heat transfer to
the solid, is known in the solution of direct problems of heat conduction. This system of equations permits de~
termination of all the parameters of the electric model (3) such as the resistance, capacitance, and quantity
of cells r, cg, and n; the boundary resistors Rg and Re the coordinate k;, time k7, and temperature kt scales,
and the initial voltage distribution by means of known relationships. In other words,. knowledge of the boundary
conditions and thermophysical parameters (coefficients) of the energy equation permits complete computation
of the regulatable parameters of the model. The process of solving the problem consists in recording the
voltage change at a desired point in time. As a rule, the aim in solving the inverse problem of heat conduction
is to determine the boundary conditions (Tg, og, . Tgs ag, ete.) or the thermophysical parameters (A, c, p,
etc.). This means that one or more of the electrical model parameters (ug, Rg, Ug, Re, Iy Cg, €tc.) are un-
known and to be determined. The solution is carried out on the electrical model by selecting the desired quan-
tity. Agreement between the given and measured temperature curve at a fixed point of the solid is a criterion
of the estimate. Diagrams for the solution of the direct and inverse problems of heat conduction and its simu-
lation are represented in Fig. 3, where the direction of inserting the data and the path of the solution is shown
by arrows. :

To illustrate the method, let us present an example of solving the inverse problem of heat conduction.
Let a flat wall be given at some point of which the temperature is measured. The temperature of the hot me-
dium flowing over the left surface of the wall and the nature of its variation must be found according to the data
of temperature measurements in the wall.

The solution of this problem for a steel wall was carried out on an electrical model of 20 cells reg(r =
0-3.2 kQ, cg =100 pF.

A number of problems was solved (Fig. 4) to clarify the influence of a brief change in temperature of the
medium Tg on the nature of the behavior of the temperature field in the wall. The temperature of the medium
in the first 20% of the time of the thermal effect hence varied according to different laws (Fig. 4a), then re-
‘mained constant to the end of the thermal effect.

It follows from Fig. 4b that brief changes in the temperature of the medium Tg damp out rapidly with
removal from the surface, especially in the case of boundary conditions of the third kind. This is explained
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Fig., 4. Nature of the change in temperature of the medium (a) and
change in the wall temperature (b) at different distances from the heated
(left) surface (1) x/6 = 0.25; 2) 0.5; 3) 1.0 for boundary conditions of the
first (dashed line) and third (solid line) kinds.

by the presence of thermal resistances on both the boundary and within the solid. The desired changes in the
temperature of the medium not only diminish in amplitude but are also deformed with time. Hence, the nature
of the change in the desired quantity should be established primarily in solving inverse problems. This can
evidently be done if the source of the initial information were located in the zone of sensitivity of the noted os-
cillations.

We understand the zone of sensitivity to be the space in which the primary information source directly
or indirectly reacts on the fundamental changes of the desired quantity.

The investigations executed show that the zone of sensitivity diminishes with the increase in the error
of the primary information source, with the increase in the frequency, and with the diminution in the amplitude
of the oscillations in the desired quantity. The choice of the location of the information source influences the
nature and accuracy of the results. However, it should be noted that if a search of the mean values is made,
then the zone of sensitivity is substantially expanded.

Therefore, it should be seen in solving inverse problems that the information source is in the zone of
sensitivity and only then should one proceed to the solution,

In the example considered, the reproduced temperature of the medium differs from the true value by not
more than 5% when the information source is located in the zone of sensitivity.

NOTATION

Thermal process: T, Tg, Tj, Tg, Te, wall, surface, initial, gas stream and environmental tem-
peratures, respectively; qg, heat-flux density on the surface; A;c¢,a, thermal-conductivity, specific-heat, and
thermal-diffusivity coefficients; p, density; o), convective heat-transfer coefficient; ; ag, oc, total heat-trans-
fer coefficient of the wall from the hot and cold medium; A,., B,., radiation coefficients; &, Egs emissivity of
the wall and the gas flow; 6, wall thickness; x, coordinate; 7, time. Electrical process: u, uj, ug. up, cell,
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initial, left- and right-side model boundary voltages, respectively; r, c,, ohmic resistance and capacitance
of the model cell; Rg, R, left- and right-side model boundary resistances; n, number of model cells; k;, Koy
kp, coordinate, time, and temperature scales; xo, cell coordinate; rg, time,
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USE OF A HYPERBOLIC EQUATION IN
THERMAL-CONDUCTIVITY THEORY

V. A. Bubnov and I. A. Solov'ev UDC 536.33

A solutioh of the telegraph equation is given which is close to a self-similar solution.

1. Singularities in Solutions of the Classical Equation of Thermal Conductivity. In the simulation of
thermal processes by the equation of thermal conductivity,

oT eT ' 1)

ot ox2
certain singularities occur. Actually, we consider the fundamental solution of Eq. (1)

T, (x, £) = 1;V 4naf exp[— x¥ (4at)) @
and find the mean value of the square of the temperature displacement from its initial position during the time
t:

AX? = [ (x — %2 Ty (x, 1) dx/f To(x, tydx = 2at. 3)

We define the rate of temperature displacement in the following manner:
d pa— Jp—
V=—r (Var) =varen. @

It then follows that the temperature nonuniformity is propagated instantaneously at the initial time. A similar
paradox occurs in the theory of Brownian motion [l

Using the fundamental solution, we find an equation for the surface of maximum temperature. To do this,
we differentiate Eq. (2) with respect to time and equate the result to zero. Then x2—2at = 0, hence x = v2at
and

dx

v =% _vaen, (5)
mex = Vaj(2t)

i.e., the expression for the rate of displacement of the surface of maximum temperature agrees with Eq. @)
and Vy,ax has a marked singularity.

The use of the classical equation of thermal conductivity in phase-transition problems also leads toa
similar paradox. Actually, in the well-known Stefan solution [2], the law of motion for the freezing line has
the form z = pvt so that

dz —_
V. =2 —p/2V 1)
ot p/(V_)
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